Period:

<u>Practice</u>: Parent Graphs of Trig Functions

Name:

First	First attempt due:	Final
Score:		Score:
	Final corrections due:	

Sketch the parent graph of each trig function without a graphing calculator using its key features (maximums, minimums, zeros, and/or asymptotes.)

List all trig functions with the given characteristics: (sin, cos, tan, csc, sec, and/or cot).

7] No y-intercept: _____, ____ 17] Range $(-\infty, \infty)$: _____, ____ 8] y-intercept of 1: _____, ____ 18] Range $(-\infty, -1] \cup [1, \infty)$: _____, ____ 9] Absolute max of 1: _____, ____ 19] Range [-1, 1]: ____, ____ 10] Absolute min of -1: _____, _____ 20] Period of π : _____, ____ 11] Relative max of -1: ____, ____ 21] Period of 2*π*: _____, ____, ____, 12] Relative min of 1: _____, ____ 22] No zeros: ____, ____ 13] No abs. max or min: _____, ____, ____, 23] Zeros at $\frac{\pi}{2} \pm \pi(k)$: _____, ____ 14] Asymptotes at $\pm \pi(k)$: _____, ____ 24] Zeros at $\pm \pi(k)$: _____, ____ 15] Asymptotes at $\frac{\pi}{2} \pm \pi(k)$: _____, ____ 25] Continuous wave shape: _____, ____ 16] Domain $(-\infty, \infty)$: _____, ____ 26] Alternating u-shapes: _____, ____

Fill in the blanks to make each statement true. (There can be more than one correct solution.) 27] The absolute maximums of sine coincide with the relative minimums of . 28] The absolute minimums of cosine coincide with the relative maximums of ______. 29] The asymptotes of cosecant form the zeros of ______. 30] The graph of sine has the same shape as _____, but they are $\frac{\pi}{2}$ units apart. 31] The graphs of ______ and _____ produce positive y-values over the interval $\left(\pi, \frac{3\pi}{2}\right)$. 32] The graphs of ______ and _____ produce negative y-values over the interval $\left(\frac{3\pi}{2}, 2\pi\right)$. 33] The graphs of ______, and _____ are increasing over the interval $\left(0, \frac{\pi}{2}\right)$. 34] The graphs of ______, and _____ are decreasing over the interval $\left(0, \frac{\pi}{2}\right)$. 35] The graphs of ______ and _____ have the same amplitude. 36] The graphs of _____ and ____ intersect at $\left(\frac{\pi}{2}, 1\right)$. 37] The graphs of ______ and _____ intersect at $\left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right)$. 38] The graphs of ______ and _____ intersect at $(\pi, -1)$. 39] The graphs of _____ and ____ intersect at $\left(\frac{5\pi}{4}, 1\right)$. 40] The graphs of tangent and ______ never intersect.