First Score:	First attempt due:	Final Score:
	Final corrections due:	

Practice:
 Parent Graphs of Trig Functions

Sketch the parent graph of each trig function without a graphing calculator using its key features (maximums, minimums, zeros, and/or asymptotes.)

List all trig functions with the given characteristics: (sin, cos, tan, csc, sec, and/or cot).

7] No y-intercept: \qquad , ___

8] y-intercept of 1 : \qquad ,

9] Absolute max of 1: \qquad , \qquad
10] Absolute min of -1 : \qquad , ___

11] Relative max of -1 : \qquad ,

12] Relative \min of 1 : \qquad

13] No abs. max or min: \qquad , \qquad , \qquad
14] Asymptotes at $\pm \pi(k)$: \qquad

15] Asymptotes at $\frac{\pi}{2} \pm \pi(k)$: \qquad , \qquad
17] Range $(-\infty, \infty)$: \qquad ,

18] Range $(-\infty,-1] \cup[1, \infty)$: \qquad , \qquad
19] Range $[-1,1]$: \qquad , \qquad

20] Period of π : \qquad ,

21] Period of 2π : \qquad
\qquad , \qquad ,

22] No zeros: \qquad , \qquad
23] Zeros at $\frac{\pi}{2} \pm \pi(k)$: \qquad ,

24] Zeros at $\pm \pi(k)$: \qquad ,

25] Continuous wave shape: \qquad , \qquad
26] Alternating u-shapes: \qquad ,

Fill in the blanks to make each statement true. (There can be more than one correct solution.)
27] The absolute maximums of sine coincide with the relative minimums of \qquad .

28] The absolute minimums of cosine coincide with the relative maximums of \qquad .

29] The asymptotes of cosecant form the zeros of \qquad .

30] The graph of sine has the same shape as \qquad , but they are $\frac{\pi}{2}$ units apart.

31] The graphs of \qquad and \qquad produce positive y -values over the interval $\left(\pi, \frac{3 \pi}{2}\right)$.

32] The graphs of \qquad and \qquad produce negative y-values over the interval $\left(\frac{3 \pi}{2}, 2 \pi\right)$.

33] The graphs of \qquad , \qquad , and \qquad are increasing over the interval $\left(0, \frac{\pi}{2}\right)$.

34] The graphs of \qquad , \qquad , and \qquad are decreasing over the interval $\left(0, \frac{\pi}{2}\right)$.

35] The graphs of \qquad and \qquad have the same amplitude.

36] The graphs of \qquad and \qquad intersect at $\left(\frac{\pi}{2}, 1\right)$.

37] The graphs of \qquad and \qquad intersect at $\left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right)$.

38] The graphs of \qquad and \qquad intersect at $(\pi,-1)$.

39] The graphs of \qquad and \qquad intersect at $\left(\frac{5 \pi}{4}, 1\right)$.

40] The graphs of tangent and \qquad never intersect.

